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for which iterative reconstruction is facilitated. Several potential constraints
for use in reconstruction algorithms were examined briefly, but support and non-
negativity are the only two constraints that have been extensively exploited.
Convergence problems when the support constraint, imposed on the world by active
illumination, has tapered edges were ameliorated by a modification to the itera-
tive transform algorithm using an "expanding mask." Alternative reconstruction
algorithms were studied, including various gradient search algorithms (for which
analytic expressions for the gradient of the error metric were derived) and a
modelling approach, but they have not yet been developed to the point where they
outperform the iterative transform algorithm. Laboratory experiments have been
planned, starting with an active laser illumination of the target with a known
illumination pattern and Fourier 1ntensity measurements. Laboratory experimental

set up was begun.
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1
INTRODUCTION AND OVERVIEW

1.1 BACKGROUND
In many imaging scenarios that require fine resolution at long

ranges, phase errors 1imit the achievable resolution and prevent
diffraction-1imited imaging. The phase errors may arise from a variety
of sources, including atmospheric turbulence, misaligned or aberrated
optics, motion compensation errors, local oscillator errors, and
waveform generator errors. The conventional approach for obtaining
diffraction-1imited imagery is to build increasingly more complex sensor
hardware having tight tolerances on its various components to achieve
the desired phase stability.

An alternative approach is to build hardware having reduced
tolerances on its phase stability, and correct for the phase errors by
employing a phase retrieval algorithm in a post-processing step. In
some instances a sensor can be used that is capable of measuring
intensity only and does rot measure the phase. Then a phase retrieval
algorithm is used to retrieve the lost phase. This is what we refer to
as Reduced Tolerance Imaging (RTI). Using this approach one can
potentially achieve diffraction-l1imited imagery using a sensor system
that is less complex, cheaper, lighter weight and less bulky.

In order for a phase retrieval algorithm to work, it is necessary
to have some form of a priori information about, or constraints on, the
image. Examples of such constraints that have been useful in the past
are nonnegativity (applicable to incoherent imaging) and knowledge of
the object's support (knowing its width or share, which is available for
objects on dark backgrounds or if one controls the pattern of radiation
that {1luminates the object).



Several important issues must be addressed to make the RTI concept
feasible. Constraints must be found that are powerful enough to ensure
that the retrieved phase and the reconstructed image are uniquely
related to the measured data. The relationship between the
reconstructed image and the measured data must be robust enough that it
1s not overly sensitive to noise or other imperfections in the data or
constraints. Reconstruction algorithms must be found that converge
reliably to a solution with a reasonable amount of computation and in
the presence of realistic amounts of noise.

This report describes the results of the first year of a two-year
program to develop the Reduced Tolerance Imaging concept.

1.2 OVERVIEW OF ACCOMPLISHMENTS TO DATE

In this section the principal results of the first year of the RTI
program wil’ be briefly susmarized. They are reported in detail in the
sections and appendices that follow.

One would 11ke to know how well one could ever hope to reconstruct
an image from given data and constraints. Then one would know whether
current reconstruction algorithms are good enough or further development
1s needed. One would also be able to evaluate and compare various
measurement schemes without having to develop reconstruction algorithms
for each. This can be done using estimation-theoretic lower bounds on
the reconstruction errors. The Cramer-Rao lower bound was derived for
the case of far-field intensity measurements with additive Gaussian
noise. The lower bound was computed and compared with actual errors
experienced in imagery reconstructed from simulated data. These results
demonstrate the usefulness of estimation theory for predicting system
performance. Section 2 and Appendix D describe these results.

For discrete, or sampled, objects of a certain type a closed-form
recursive reconstruction algorithm has been developed. It reconstructs
an image from the autocorrelation function which {s gotten by inverse
Fourier transforming the measured Fourier intensity data. Although the



closed-form reconstruction algorithm has questionable usefulness because
1t is sensitive to noise, 1t has provided valuable insights into the
reconstruction problem. It constitutes a uniqueness proof for the class
of objects for which 1t 1s applicable and suggests {1lumination pattern
shapes that are advantageous. These results are described in Section 3
and Appendices A, B and C.

Since image reconstruction with degraded Fourier phase or no
Fourier phase requires a priori constraints on the object, it is
imperative that object constraints that are sufficiently powerful and
robust be found. The vast majority of the work to date has concentrated
on two constraints: support, or shape (which occurs naturally for
imaging satellites and may be forced by an illumination pattern) and
nonnegativity (valid for most passive incoherent imaging problems).
Issues relating to these and other potential constraints are discussed
in Section 4.

When a support constraint is imposed by using an active
11lumination pattern at the target to achieve the desired known shape,
the principal problem is diffraction effects at the edges of the
11lumination pattern. This makes the 1llumination pattern fall off
slowly and smoothly, {.e., 1s tapered, rather than falling off abruptly
as would be preferred. It has been found that reconstruction is much
easier when there is little or no tapering of the 1l1lumination pattern.
Previous versions of the fterative reconstruction algorithm were
unsuccessful in reconstructing complex-valued images when large amounts
of taper was present. Improved versions of the algorithm, employing an
"expanding mask,"” were developed, and this resulted in a greatly
fmproved result. It consists of using an unrealistically small support
constraint for early iterations, which forces the energy of the image to
be better centered within the true support constraint, and using
progressively larger support constraints for later iterations. Section
5 describes the effects of different types of illumination patterns,
describes the improved algorithm employing the expanding mask, and shows



experime~tal reconstruction results.

The 1terative algorithm described 1n Sectfon 5 is one of several
possible approaches to solving the phase retrieval problem. Improved
slgorithms are sought which are faster and more robust. One family of
altermative algorithms are the gradient search algorithms. They consist
of defining a merit function, computing the gradient of the merit
function as a function of a parameter space, and searching in the
parzmeter space for a minimum of the merit function in the direction of
the negative of the gradient (the global minimum of the merit function
defines the solution, the reconstructed image). Merit functions that
were examined include the amount by which the modulus of the Fourier
transform of an object estimate differs from the measured Fourier
modulus data and the asount by which an output image violates the
object-domain constraints. Parameter spaces that were investigated
include the space of object estimates and the space of Fourier phase
estimates. Closed-form expressions for the gradients were derived, and
the entire gradients can be efficiently computed using a small number of
fast Fourfer transforms. Gradient search algorithms were tested on the
computer with mixed results to da‘e, dDut they show promise and will be
developed further. These resuits are described in Section 6 and
Appendices E, F and G.

Another approach to solving the phase retrieval problem 1s a
modeling approach. The complex Fourier transform or pieces of it are
modeled by a parameterized function. The measured Fourier modulus fis
least-squares fitted to the modulus of the model to determine the
unknown parameters. Then the parameters are inserted into the complex
mode]l which 1s evaluated to determine the phase. Attempts to make the
modeling approach work were unsuccessful. It is likely that the models
used were not appropriate to the complex Fourier transforms of interest.
Better models would be needed before further work along these lines
should be pursued. This work is discussed in Section 7.



The vast majority of the phase retrieval work prior to the current
effort revolved around analysis and computer simulations. Since the
computer simulations implicitly assume a discrete model for the object,
there is a danger that the real, continuous world might behave
differently. For this and other reasons it is very important tc
demonstrate feasibility on real data collected in the laboratory that
allows us to include the important real-world effects on the data. At
least two experiments will be performed: an active, coherent experiment
and a passive incoherent experiment. The active coherent experiment is
being set up in the laboratory. It fncludes the 1l1lumination of the
target with a laser beam pattern having the desired illumination shape
and controlled amounts of edge tapering. A lens forms the far-field
(Fourier transform) at a detector plane. A second channel including
imaging optics will be used to form a "ground truth” image. Section 8
describes the active coherent experiment being set up and mentions plans
for the passive incoherent experiment.
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INFORMATION THEORETIC LOWER BOUND FOR PHASE RETRIEVAL

2.1 INTRODUCTION

In phase retrieval problems, it is desired to estimate the phase of
the Fourier transform of an object given measurements of the magnitude
({.e., the modulus or the square root of the intensity) of the Fourtier
transform. This is equivalent to estimating the object itself because
of the Fourier transform relationship. Several jterative Fourier
transform algorithms have had great success in making such object
estimates from Fourier magnitude data and object constraint information
[2.1, 2.2]. However, other than through empirical results [2.3], 1t has
not been known how the error in the object estimate depends on
measurement noise, constraint information, and other parameters
describing the problem.

Results in estimation theory include a number of methods whereby
lower bounds on the mean-squared error of the object estimate may be
calculated. These methods use knowledge of the measurement procedure,
the statistics of the object, and the statistics of the nofse process to
compute an error lower bound. An important feature is that these
methods do not require specification of the algorithm used to compute
the object estimate from the measured data. The lower bound, then, is
independent of the algorithm and therefore indicative of the best
possible estimation performance given the chosen measurements and the
underlying statistics. '

The Cramer-Rao lower bound is the most often used lower bound
because it 1s usually the least difficult to compute. It has been used
in a large number of single and multiple parameter and time-varying
waveform estimation problems with great success [2.4]. Algorithms exist



which produce estimates that achieve the Cramer-Rao bound in problems in
which the measurements are linearly related to the parameters to be
estimated, the noise is additive, and the statistics are Gaussian. In
nonlinear problems (of which phase retrieval will be an example), the
lower bound can usually be achieved only at high signal-to-noise ratios
(2.4, 2.5]; nonetheless, the lower bound is generally regarded as an
important first step in evaluating and designing measurement procedures
and parameter estimatfon algorithms for these problems. The application
of Tower bounds to two-dimensional signal recovery problems described
here 1s a recent development, and it is shown that it is again a useful
tool. Appendix D gives further background materfal on Cramer-Rao lower
bounds.

2.2 PHASE RETRIEVAL PROBLEM DEFINITION

From the many combinations of possible phase retrieval problems and
underlying assumptions, the following specific example is chosen. It it
desired to estimate a two-dimensional, complex-valued object fm from
real-valued measurements Sp where m = ('1' nz); My, M, = 0, 1,..., M-1
and p = (pl. pz); Pys P ® 0, 1,..., 241. The measurements are related
to the object by

Sp = clp + Np (2-1)
and
'12 [ 2
Ip = Z Wl X [—"Zﬁ'—pi] , (2-2)
m

where Ip is the magnitude-squared (intensity) of the discrete Fourier
transform of f, c 1s a proportionality constant, Np 1s additive noise,
<M, p> = mp, + moPos and summation over m implies the double summation
over m, and ",. Object constraint information {is essential for



estimating the object. The weighting array Yo 1s explicitly included in
Eq. (2-2) to allow arbitrary support constraints to be placed on the
object. For an object of M by M resolution elements, Nyquist sampling
requires a measurement array of size 2M by 2M because the
magnitude-squared has twice the bandwidth of the complex-valued rourier
transform. It will be convenient later to consider w, f, S, I, and N as
vectors. The phase retrieval problem 1s to estimate the object f civen
the set of measurements S and knowledge of the constraint that the
product w.f. 1s zero wherever Y 1s knowmn to be zero.

This mathematical statement can represent a number of applications
in which phase retrieval problems arise. For example, consider the
measurement geometry shown in Fig. 2-1. A known, complex-valued,
monochromatic wavefront w(x,y) fl1luminates an unknown, complex-valued
object f(x,y). Alternatively, for the wavefront sensing problem, an
unknown monochromatic wavefront may pass through a known aperture having
known complex transmittance w(x,y). The intensity I(u,v) in a
measurement plane located a distance R from the object plane fis:

2

I(u, v) = —I-E-Iffw(x. y)f(x, ¥) exp [ 12n(ux s vl | 4 U (2-3)
(AR)

where ) is the wavelength and it is assumed that R is sufficiently great

that the Fraunhofer approximation can be made. A discrete set of

measurements S 1s made with

Sp = T ]I(u. v) du dv + N (2-4)
AA
where n {s the detector efficiency, T is the detector integration time,

AA is the area of a detector element, Np is the detector noise, and the

subscript p = (pl. pz) indexes over the measurement plane. A phase
retrieval method (e.g., an iterative Fourier transform algorithm) would
be applied to the measurement set S using the object constraint provided

p
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by the 1llumination pattern w to give an estimate of a sampled version
of the object f. Conversion of Eqs. (2-3) and (2-4) into discrete form
gives, for this application, a value for the constant c in £q. (2-1) of
nTM(Aa/XR)z where Aa 1s the square area of an object sample.

The complex-valued object f can be written in terms of {ts real and
imaginary parts,

r i
£ o1+t (2-5)
Equation (2-2) then becomes
2
r § -{n<m >
Z w.(f. + 1f.) exp [_;_L] !
m

] =

p (2-6)

2.3 CRAMER-RAQ LOWER BOUND

It can be proven that the variance of any unbiased estimate of a
component of a random vector is greater than or equal to the
corresponding diagonal element of the inverse of what is called the
Fisher information matrix. The value of the diagonal element is the
Cramer-Rao lower bound. The elements of the Fisher information matrix
depend in turn upon the second partial derivatives of the joint
probability distribution of the measurement vector and the vector to be
estimated. This result 1s proven primarily by the use of the Schwarz
tnequality.

Application of the Cramer-Rao method for determining lower bounds
on estimation errors to a specific problem must therefore begin with a
determination of the statistics of the parameters to be estimated and of
the noise [2.4, 2.6]. In this analysis, 1t is assumed that fl, f;. and

Np are each statistically independent, zero mean, Gaussian random

10



varfables with variances c}?z. g$/2. and o% respectively. Note that

this implies that the variance of the complex-valued f. is 03.

By the definition of conditional probability,
p(S, f) = p(S|f)p(f) (2-7)
where p(S,f) is the joint probability density of S and f, p(S|f) 1s the
conditional probability density of S given f, and p(f) is the

probability density of f. (Recall that f and S are vectors.) The
assumption of Gaussian statistics gives

2
-1f |
p(f) =] [L5 exp —— (2-8)
I_:i[g °f
and, using Eqs. (2-1) and (2-6) which imply that p(S|f) = p(N = S - cl),
2
-(S. -cl))
p(S|f) = I I 1 exp P , p . (2-9)
5 n/?? 20

The Cramer-Rao method continues by defining the Fisher information
matrix J in terms of the probability density functions. For the present
problem, where it is desired to estimate the statistically independent
real and imaginary parts of f, a workable notation 1is to partition J
into four submatrices:

Jrr E Jri

PR PR SRR (2-10)

Jir , Jii

1



J 1s of dimension 2"2 by 2"2 (representing the "2 independent f; plus

the "2 independent ﬂ:) and each of the submatrices 1s of dimension "2 by
Hz. The elements of the submatrices are defined by, for example [2.4,
2.6],

2

re 3-&n p(S, f)

Jmn -t [ " ] (2-11)
m’'n

where E[:] denotes expectation taken over both f and N and the partial
derivative holds S constant. The other submatrices are defined by
appropriate substitution of the superscripts r and 1. It is assumed that
these and any other required derivatives exist. This assumption is valid
for the phase retrieval problem.

The Cramer-Rao method concludes by determining the inverse J'1 of
the Fisher information matrix J. The dfagonal elements of J'l are the
desired lower bounds on the mean-squared error of the object estimate f.
From the convention used to define J, the upper left diagonal elements
of 31 refer to f; and the lower right elements to f;. 1 J° ! gs
similarly partitioned into four submatrices:

K" ; Kri
R A s I (2-12)
Kir ' Kii
2

then the Cramer-Rao lower bdound em ON the mean-squared error,
E[Ifn - f.IZ]. in the estimate f_ of object component f.. 1s the sum of
the diagonal elements for f: and f;:

e, = KT+ KM, (2-13)

12



This is the quantity which the following analysis seeks. Strictly, the
lower bound 1s only for unbiased estimates of f. It 1s beyond the scope
of this work to determine whether particular phase retrieval algorithms
give unbiased es imates.

2.4 LOWER BOUND FOR PHASE RETRIEVAL

Substituting Eqs. (2-8) and (2-9) into Eq. (2-11), differentiating,
and discarding a term with zero expected value gives [2.4]

rr = CZ al + Zémn (2_]4)
on 07 afr af <
N Of
where 6 1s the Kronecker delta function. Similar results hold for the
other submtr1ces of J except that J and J" have no S term. It is
important to note that this result holds for any function [ of the
parameter f. It does not assume that the measurements are of the
Fourier magnitude-squared.

Equation (2-6) can now be used to compute the first term on the
right hand side of Eq. (2-14). First,

_ = w*z j(fj + 1f ) exp[ inej - m, p>] + c.c. (2-15)

r 1y /el i -in<j + k - m-n, p>
Z E wn‘;w,‘;z Z ijk(fj + H"J.)(fk + 1fk) exp[ M . ]
k

LI
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r Ty /el i -in<j - k -m +n, p>
+ w';wnzg w’jwi:(f"j + ifj)(fk - 1fk) exp[ L M ]
J

+c.c.'s|. (2-16)

Taking the expected value gives

X _aﬁn ]
af af"

p

Zw:"‘w Z |w Izof exp ['1“" ﬁmj p’] +c.c. (2-17)

The summation over k is eliminated since the f; and fui' are independent.
The first and third terms in Eq. (2-16) are also eliminated because the
fn'; and f:' have equal variances. Finally, the summation over p gives

2.2
(% f"z'"' I .
"jl Smn (2-18)
c
because
p

14



Equation (2-18) is a general expression for one of the submatrices
of the Fisher information matrix J given the assumptions above. Similar
computations show that J11 = J™" and Jr1 = J‘r 3 0. In this case, then,
J is diagonal and can be analytically inverted to obtain J'l. This is,
of course, a result of the discrete Fourier transform nature of Eq.
(2-2). Other phase retrieval problems may lead to nondiagonal J

matrices which may be difficult or impractical to invert analytically.

Using Eqs. (2-13) and (2-18), the lower bound ‘3m on the
mean-squared error in the estimate of fm is:

2
2 . f

(2-20)
om 4C204 le |2 2
. sz m }E:lel

1

IN ]

It s, as stated earlier, independent of the phase retrieval algorithm
used to estimate f.

The notation of Eq. (2-20) can be simplified by defining a
signal-to-noise ratio:

2
{EfcI ]}
SNR = ——P— (2-21)
N
where, by Eq. (2-6),
2
E[clp] = cog E: | wyl® (2-22)
J
Equation (2-20) then becomes
2 gf
e- = . (2-23)
on 4 SNR M pw |
1 +




As would be expected, the lower bound on the estimate reduces to the a
priori variance 03 if either f_ 1is not 11luminated ("n = 0) - the SNR
is zero. The lower bound also approaches zero as the SNR a_proaches
infinity.

For the case in which the magnitudes of the support constraint w
are either zero or one, Eq. (2-20) predicts that, if the support
constraint includes a smaller part of the M by M object array (and
thereforez:lelz decreases), then the error lower bound increases. This
1s due to the loss of signal as can be seen from Eq. (2-22). On the
other hand, 1f the SNR is held constant, then Eq. (2-23) predicts that
the error bound decreases. This is equivalent to sampling at greater
than the Nyquist rate in the measurement array in the Fourifer domain.
The well-known error decrease 1s known as compression gain,

It 1s known that current iterative phase retrieval algorithms are
more successful in converging to a solution for some object support
constraints than for others (e.g., for a triangularly-shaped pattern
imposed by w, the algorithm more readily finds a solution than for a
square pattern) [2.7]. By a solution is meant an object estimate that
is as close to agreeing with the measured data and the a priori
constratints as possible. In some cases, an algorithm stagnates and
produces an output in poor agreement with the data 2nd constraints; such
an output should not be considered an object estimate. If there is more
than one solution that closely agrees with the data and constraints, the
algorithm may find a solution that is different from the true object.
There is a tendency for iterative transform algorithms to find solutions
more readily for cases guaranteed to have unique solutions (e.g.,
objects with triangular support constraints). However, when the
solution 1s unique, it 1s also known that, if a solution 1s found (i.e.,

16



the algorithm does not stagnate in poor agreement with the data and
constraints), then the mean-squared error is independent of the shape of
the object support constraint. From either Eq. (2-20) or Eq. (2-23), it
can be seen that, for a given value of z|wJ|2. the lower bound egm
depends only on |\v'.|2 and not on the two-deenﬁonal distribution of w
(the support constraint). The Cramer-Rao lower bound is apparently a
measure of the error of algorithms which have found a reasonably good
estimate and 1s insensitive to lack of uniqueness or to
algorithm-dependent problems such as stagnation. The insensitivity to

unfqueness is further demonstrated by an example shown in Appendix D.
2.5 CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

In this investigation of the application of estimation theoretic
lower bounds to phase retrieval and image reconstruction problems, the
Cramer-Rao lower bound on the mean-squared error in the object estimate
from Fourier magnitude-squared measurements, given additive noise,
Gaussian statistics, and Nyquist sampling, was found. The lower bound
approaches the appropriate values in the limits of high and low SNR, but
does not depend on the object support constraint. Further research
should investigate other measurement models (e.g., Fourier magnitude
measu-ements), object domain constraints (e.g., nonnegativity),
statist‘cal assumptions (e.g., Poisson noise), and/or other information
theoretic lower bounds to extend and refine the bounds and to attempt to
show a dependence on a priori knowledge such as support constraints.
Computer simulations and laboratory experiments should also be performed
to allow comparison of the lower bound to the error achieved by current
phase retrieval algorithms.
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3
UNIQUE CLOSED FORM RECONSTRUCTION ALGORITHM

3.1 INTRODUCTION

Since the object's autocorrelation function can be computed from
the modulus of its Fourier transform, reconstructing the object from
its autocorrelation is equivalent to reconstructing it from the modu-
lus of its Fourier transform. In an earlier effort, it was shown
that a unique closed-form algorithm for reconstructing an object from
its autocorrelation, which operated in a recursive fashion, was pos-
sible for two very special kinds of objects: those fitting within a
rectangle with an additional point off one corner of the rectangle
and those fitting within a triangle having nonzero corners. This
earlier result has been vastly generalized to include objects having
supports whose convex hulls have no parallel sides, a very large
class of objects. This generalized algorithm, which includes a
uniqueness proof, is described in Section 3.2 and Appendicies A, B
and C.

Experimental reconstruction results obtained using the algorithm
are shown in Section 3.3. Although the present form of the algorithm
is very sensitive to noise, 1imiting its practical use, it has proven
to be very valuable in that it suggests useful illumination pattern
(support) constraints, as is demonstrated in Section 4.1. Another
problem with this reconstruction algorithm is that it explicitly
assumes a sampled object, i.e. one consisting of an array of delta
functions, and it cannot in its present form be employed for real-
world continuous objects. One possible way around this problem is to
use the quasi-sampling method suggested in Section 3.4.
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3.2 PHASE RETRIEVAL FOR DISCRETE FUNCTIONS WITH SUPPORT CONSTRAINTS

3.2.1. INTRODUCTION

The reconstruction of object functions having non-redundant
spacings was discussed in [3.1]. Hayes and Quatieri [3.2] showed
that the boundaries of triangular objects can be reconstructed by
making use of certain spacings in the object which are non-redundant.
In another direction, Bruck and Sodin [3.3] showed that the unique-
ness of phase retrieval is equivalent to the irreducibility of a
polynomial in two variables which is closely related to the Fourier
transform (z2-transform) of the object function. Fiddy, Brames and
Dainty [3.4] used Eisenstien's irreducibility criterion to prove
uniqueness for object functions satisfying certain support con-
straints and showed that Fienup's input-output iterative Fourier
transform algorithm [3.5-3.7] converged faster to a better recon-
struction when these constraints were satisfied. Fienup [3.8] pre-
sented a closed-form algorithm for reconstructing such object func-
tions from their autocorrelation functions. He also presen.ed a
similar closed-form reconstruction algorithm for objects sat:sfying a
triangular support constraint and thereby showed that such objects
are uniquely defined by their autocorrelation functions among all

object functions satisfying the same support constraint.

A generalization of Fienup's results to a wider rlass of support
constraints is presented here. Also, an algorithm for generating

closed-form reconstruction algorithms is described. Brames [3.9]
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recently obtained a result similar to the uniqueness theorem in

Section 3.2.3.

3.2.2. MASKS

Let .‘RZ denote the Euclidean plane and let Z2 denote the points in
®% with integer coordinates. A finite subset of 2° s a mask if it
contains at least three non-collinear points and its couvex hull in
9? (the smallest convex set containing it) has no parallel sides.

Let M be a mask and let [M] denote its convex hull in®R%. Then [M]

is a convex polygon (including its interior). See Figure 3-1. A
vertex v of [M] is opposite a side s of [M] if the line through v and
parallel to s contains no points of [M] other than v (see Figure 3-2).

A vertex of [M] is a reference point of M if it is opposite some side

of (M) (see Figure 3-3). The set of all reference points of M will be
denoted by R(M).

3.2.3. UNIQUENESS THEOREM

Let f be a complex-valued function on Zz. The support of a

function on Z2

is the set of points at which the function is non-
zero. Let S(f) denote the support of f. If S(f) is a finite set,

the autocorrelation function of f is defined for x ¢ Z2 by

f(x) =2y FE(y - x) (3-1)
chz

where the * denotes complex conjugation. Let f] be another
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M M]

M2 M2]

FIGURE 3-1. M, IS A MASK. M, IS NOT A MASK SINCE [MZ] HAS
TWO PARALLEL SIDES.
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(M]

FIGURE 3-2. THE VERTEX v IS OPPOSITE THE SIDE s.
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(M]

FIGURE 3-3. THE CIRCLED VERTICES OF [M] ARE THE REFERENCE
POINTS OF THE MASK M.
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complex-valued function on Z2 with finite support S(f]) and

autocorrelation function ry-
We have the following uniqueness theorem.

Theorem: If M is a mask, R(M) € S(f) S M, S(fy)SMand r - ry» then

there exists a complex number a of modulus 1 such that f‘ = af.

The proof is in Appendix A.

3.2.4. RECONSTRUCTION ALGORITHMS

In this section closed-form algorithms for reconstructing a func-

tion from its autocorrelation function will be described.

Let S be the number of vertices of [M]. Let Vor ¢ ¢ v Vo be
an ordering of the vertices going around (M] in the counter-clockwise
direction and let Pgr -+ 0 Pr_) be a similar ordering of the
reference points of M. By Lemma A-2 in Appendix A, R(M) contains an
odd number of points so that T is odd. let K = (T - 1)/2 and let
qQ, = p(nK)mod T forn«0, ..., T-1, SinceK and T are
relatively prime, the q, are distinct and hence run through all
the points of R(M) (see Figure 3-4). By Lemma A-4 in Appendix A,

q_ and q(n*l)mod T have unique separation in M, That is, if x,

n
yecMand x -y = q(n*l)mod T - 9 then x = q(n*l)mod T and
Yy =Q,.

Let N be the number of points in M, A reconstruction algorithm

for the mask M is an ordered pair, (q, m), where q = (qo, . e ey qN_])

25



V2¥P4*q2
V3

Va = =
¢ P70 V1= P3* a4
vs
)

V6=pl=q3 v73p23ql

FIGURE 3-4, THE NUMBERINGS OF THE VERTICES AND REFERENCE POINTS OF
A MASK. HERE S = 8, T = 5, AND K = 2,
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is an ordering of the points in M and m = (mT. ol L » mN_]) is a
sequence of integers satisfying the following conditions. The points
Qgs -+ = +» Qp_y are as described above. FornaT, . . ., N-1,
the integers m satisfy the conditions 0 <m < T -1, and
Mh(noqn -qmn)g {qo. RN qn} and

MO(M - q * qmn) c {qo. + « «» G 4} . In the next section, an

algorithm for generating such reconstruction algorithms will be described.

In order to justify the above definition of reconstruction algo-
rithms it will now be shown how they can be used to reconstruct a

function from its autocorrelation function.

Let f be a complex-valued function on Zz satisfying R(M) S S(f)C M
and let r be its autocorrelation function. Now let
X = q(n*l)mod 1 9% and suppose that for some y ¢ ZZ, f(y)f'(y - x) ¢ 0.
Then y ¢ S(f) S Mandy - x ¢ S(f)CSM., Also, y - (y - x) = x =
Un+1)mod T = In° Since Un+1)mod T and q, have unique
separation in M, it follows that y = q(n*l)mod T and y - x = q,-
Therefore y = q(n*l)md T is the only y ¢ Zz for which

f(y)f (y - x) 4 0, hence

"ot )mod T = %) = F((qet)mog ) F (%), (3-2)

and since R(M) € S(f), r(q(nﬂ)mod T - qn) $ 0. It now follows from

(3-2) that
M e )
"0 = Y2n+1)mod T
2 n=0
If(qo)l L K-T . (3‘3)
T {92002 = Yot
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Since f is defined by r only up to multiplication by a modulus 1
complex number, we may require that f(qo) > 0. Then f(qo) is equal
to the positive square root of the right-hand side of (3-3). Now
f(qn) can be computed for n 1, . . ., T -1 from the formula
£(a,) = r(a, - a,_y)/f (a,_¢). It is shown in Appendix B that if
(g, m) is a reconstruction algorithm then the following program will
compute f(qn) forneT, .. ., N=1, Set f(x) =0 for x ¢ Z2

andxﬁqn,n-o,...,T-l,andsetn-T-l.
Step 1: IfnaN-1, stop. Otherwisen<«n + 1,

n-1 . .
Step 2: f(q,) = |r(q, - q, ) - 2 fq,) f (q - q, * a, )[/f (q, ).
n k=0 n n

Step 3: Go to Step 1.

3.2.5. ALGORITHM FOR GENERATING RECONSTRUCTION ALGORITHMS

It will be assumed that we are given a sequence of all vertices

v o Vo of [M] where M is a mask and the sequence is ordered

0 v -
in the counter-clockwise direction around [M].

Forn=0,...,S~-1, let s, be the side of [(M] with end-

points v_ and v(n*l)mod S Let U be the linear operator on .‘RZ

n
which rotates each vector in.922 90° counter-clockwise.

First, the reference points po. <« s Pry mist be found. Note
that every side of [M] has a vertex opposite it which is therefore a
reference point. Of course, several sides may have the same vertex

opposite them, let w = v -v. forn=0, . .., S-1.
n (n*1)mod S n
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A vertex Vo is opposite a side Sh if and only if

Cvpo Uw > > Ky, Uw D for k = 0,. . ., S-1, where (,) denotes
the inner product on 92 (see Figure 3-5). Thus, by taking each side
in the order Sgr + + +e» Sg_)» all the reference points of M will be
found, and if they are numbered, in the order in which they are found,
po. e o os Pr_p» then the ordering will be in the counter-clockwise

direction around [M].

As mentioned above T is odd. Let K = (T - 1)/2 and q, =
p(nK)mod he 0, . -« «» T=1, Since each q, is a reference point
and therefore is a vertex of [M], there exists an integer kn such that

Oiknis-landqn-vkn. Forn=0, ..., T =1, define

Yo = W(k 1)mod s " ““'k(m)md = (3-4)

Then by Lemma A-3 in Appendix A, for x ¢ M, x 4 q, and x 4 q(n*l)mod T
<qn, yn) < {x, yn> < <q(n*l)mod s ¥y 2 This is equivalent to
saying all points in M excluding q, and q(n+l)mod T lie strictly between
lines pendicular to Yn and passing through q, and q(n*l)mod T See
Figure 3-6. (The uniqueness of separation of q, and q(nﬂ)mod T

mentioned in Section 3.2.4 follows from this double inequality.)

Now let a, = q, * q(nﬂ)mod T and let 8, = an/z for
n=0,...,T=-1. Then 8, is the midpoint of the line segment
joining q and q(nﬂ ymod T° Let D = M ~ R(M) (set difference)
and let ¢ be the characteristic function of D as a subset of Zz.

This is, # is the function on Z2 which is 1 on D and 0 outside D.
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~ TLL wo //

AN ILLUSTRATION OF THE VECTORS w_ AND Uw . HERE n = 0

FIGURE 3-5.
AND THE ORIGIN IN ® IS DENOTED BY “0%.



FIGURE 3-6. AN ILLUSTRATIUN OF THE VECTORS Yp- HERE S = 8, T = 5,
n=4,k, =1, (k4-1)modS-0, (n +1)mod T = 0 AND

k0-4.
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For x eDand0cnecT-1,leth(x)=Cx-8,y>. Then
'hn(x)llllynll is the distance from x to the line through 8  and
perpendicular to Yoo where ||yn|| denotes the Euclidean norm of Yn
(see Figure 3-7). The set D contains N - T points and we define T
orderings of the points in D, 0 = | dn.O' « . ey dn,N-T-l fo
ne0, ..., T -1, satisfying Ihn(dn.k)l > Ihn(dn'k,])l for
k«0, .. ., N=T=2., The following program generates sequences
Qps + = o» Qy and Mry o o oo My gqe

Set naT -1 and k = 0 and enter the following loop.

Step 1: IfnaN-1, stop. Otherwise define
b-min{j:Oijin-T-lme(dkj),l}.
Step 2: If o(ck - dk b) =1, go to Step 7.

Step 3: n+en =+ 1,

Stez 4: [Define q, = dk,b‘

Step 5: If hk(qn) > 0, define m, = k. Otherwise define
m, = (k * 1)mod T.

Step 6: #(q ) - 0.

Step 7: k « (k * 1)mod T and go to Step 1.
[t is shown in Appendix C that the loop is not infinite and if
Q=(q5, . . .y Qy ) andme (m, .. ., m ) then (q, ©) is a

reconstruction algorithm.
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FIGURE 3-7. THE DISTANCE FROM AN ARBITRARY POINT x IN D TO THE LINE
THROUGH B AND PERPENDICULAR TO y_ isd = Ihn(x)|/||yn| .
HERES-B,T-S,ANDn=4.
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3.2.6. IMPLEMENTATION

The algorithms presented in the last two sections can be imple-
mented with two computer programs. The first program would implement
the algorithm in Section 3.2.5. Its input would be a mask and its
output would be a reconstruction algorithm. The second program would
implement the program in Section 3.2.4. Its input would consist of 1
reconstruction algorithm and an autocorrelation function and its out-
put would be the object function. With this arrangement, if one
wished to reconstruct many object functions using the same mask, the

first program would have to be run only once.

3.2.7. CONCLUSIONS

[t has been shown that if a function is 2ero outside a given mask
and is non-zero at the reference points of the mask, then it is
uniquely determined (up to multiplication by a complex number with
modulus 1) by its autocorrelation function among all other object
functions which are zero outside the mask. (A mask is a set of
points in the discrete lattice whose convex hull has no parallel
sides.) Moreover, there is an algorithm for generating
reconstruction algorithms for any given mask which in turn can be
used to reconstruct object functions satisfying the above mentioned

conditions from their autocorrelation functions.

This theory has some similarity to holography [3.10, 3.11].

However, here several (at least 3) reference points are used whereas
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only one reference point is needed in the holographic situation. On
the other hand, the holographic reference point must be isolated from
the rest of the object whereas no such isolation of the reference
points is required here. [t is interesting to speculate whether
there might be a more general theory of which this theory and holo-

graphy would both be special cases.
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3.3 EXPERIMENTAL CLOSED-FORM RECONSTRUCTION RESULTS

Autocorrelation data was computer-simulated, including the
effects of noise, and images were reconstructed using the closed-form
reconstruction algorithm described in the previous section.

For each reconstruction experiment an object, f(x,y), fitting
within a triangular support was Fourier transformed:

Fu,v) = FLf(x,y)]

The squared modulus, |F(u,v)|2, of the Fourier transform was com-
puted, and it was scaled in intensity so that the total integrated
intensity became equal to a given number of photons,

2
N uzvlr(u,v)| :

Then each intensity sample IF(u,v)I2 was replaced with a random
number, Fn(u,v) 2 drawn from a Poisson distribution with mean
and variance equal to |F(u,v) 2. When IF(u.v)I2 is a large num-
ber (>32), then a Gaussian approximation to the Poisson distribution
is used. This Poisson noise process simulates the effect of photon
(shot) noise on the measured Fourier intensity data. The normalized
RMS error (NRMSE) of the data is given by

p- -

(|F_(u)| - |F(u,v)])2
;?;: an u,v | Iquv |
(u,v)
;;; |F u vl

A noisy autocorrelation was computed:
ro(x,¥) -‘J"[|F,,(u.v)|2];

and an image, gn(x.y), was reconstructed using the closed-form
reconstruction algorithm., The NRMSE of the reconstructed image is
given by

1/2

Data NRMSE =




[ T2

Z Iagn(x.y) = f(x.y)l2

Image NRMSE = | 2L , y
> o]

Xy
L .

where a is a constant chosen to minimize the error metric, which
accounts for the unknown phase constant associated with f(x,y). It
can be shown that the value of a that optimizes the Image NRMSE is

Z £(x,y)g (x,¥)
1o T
)D

|9(X.y)|

Xy

Examples of images of objects reconstructed from noisy data, for
which the object is a uniform triangle, are shown in Figures 3-8 to
3-10 for various sizes of the object. Figure 3-11 plots the image
NRMSE versus the data NRMSE for the images shown in Figures 3-8 and
3-9. Several interesting effects are evidenced from these recon-
struction examples. First, the closed-form algorithm is very sensi-
tive to noise. A fraction of a percent error in the data results in
several percent error in the image. Second, increased data error
results in increased image error, but only in an average sense.
Occasionally the image error can be greater when the data error is
less, because for a given amount of data error the image error that
one gets is highly variable. Depending on the particular realization
of the noise in the data, the three corner points will have different
amounts of error. Small differences in the error of the corner
points can yield large differences in the err-r of the image since
the corner points are used over and over again and the error from
them propagates and is magnified as the recursive steps build upon
one another. This also gives rise to a third effect: the error for
the interior points of the reconstructed image is much worse than the
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FIGURE 3-8. 8 « 8 OBJECT ANU IMAGES RECONSTRUCTED BY THE CLOSED-FORM
RECURST vt ALGORTI™HM.  Number of photons listed are in the fourier intensity
domain.
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FIGURE 3-9. 16 x 16 TRIANGULAR OBJECT AND IMAGES RECONSTRULTED BY THE
CLOSED-FORM RECURSIVE ALGORITHM
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FIGURE 3-10. 32 x 32 TRIANGULAR OBJECT AND IMAGES RECONSTRUCTED BY THE
CLOSED-FORM RECURSIVE ALGORITHM
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error of the edge points in the image. Fourth, for similar reasons
the error of larger images is far worse than the error of smaller
images. Fifth, a stripe pattern parallel to each of the edges tends
to occur. This happens for the following reason. Suppose that one
of the three reconstructed corner points is brighter than it should
be. Then the opposing edge of the image, the computation of which
involves division by the corner point, will tend to be too dark. Then
the next inward row (or column) from the edge, the computation of
which involves subtraction of terms involving the edge, will tend to
be too bright, etc.

How badly this striping effect affects the interpretability of an
image was tested by using a picture of an airplane as the object,
imbedded in a 32 by 32 triangle. The results of reconstruction
experiments from noisy data using the closed-form reconstruction
algorithm for the object are shown in Figures 3-12, 3-13 and 3-14.
As seen from Figure 3-12, the image can still be discerned through
the partially-obscuring striped pattern. Therefore the intelligi-
bility of the image may be understated by the 1image NRMSE.
Figure 3-13 shows the image NRMSE versus the total number of photons
for all the noise values tried for this object, and Figure 3-14 shows
the same information, but as a function of data NRMSE.
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FIGURE 3-12. 32 x 32 JET OBJECT AND IMAGES RECONSTRUCTED BY THE CLOSED-
FORM RECURSIVE ALGORITHM. The number of photons in the Fourier intensity
data, the corresponding data NRMS error and the reconstructed image

NRMS errors are as follows:

No. of Photons Data NRMSE  Image NRMSE

(a) 9 - Original Object -

(b) 105 0.0011 0.03
(c) 10 ; 0.0034 0.10
(d) 6 x 10, 0.0043 0.11
(e) 2 ¥ 10 0.0073 0.27
(t) 10 0.0107 0.60
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3.4 QUASI-SAMPLING ILLUMINATION PATTERN

One rproblem with the closed-form reconstruction algorithm
described in Section 3.2 is its reliance on a sampled object. In
this section, it is shown that by a specfal kind of illumination one
can approximately achieve the desired sampling effect in the target
area.

[f one illuminates a target area with four mutually coherent
point sources in the far field at a distance R given by

- - + - L 4 + + =
§(v Ugr ¥ vo) é(u Uge Vv vo) ¢(u Ugs V¥ vo)

+ L J L
é(u*u_v vo)

0

one gets a field at the target area given by the sum of four olane
waves (Fourier transforms of the acelta functions):

(xR)'l{cxp [.—1\?("0' * vo_y)] + exp ['—1%3-(%:( - voy)]
[

+ exp ={Rﬂ(-uox + voy)] + exp[—'-l'%l(-uox - voy)]}

b

o () 00 o () oo (35)

A X v
« 40R)7! cos (l;g') cos (b—xéf)
which has intensity

160R)"? cos? C—“;%l->°°*2 1?’)

which has lines of zeros along x = AR(n *+ 1/2)/(2u,) and along
Yy = AR(n +1/2)/(2u,), for n =« 0, #1, 82, . . . . This is
11lust- ted in Figure 3-15,
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FIGURE 3-15. QUASI-SAMPLING ILLUMINATION PATTERN. The circles are the

locus of points 3 dB down from the array of peaks and the lines are the
locus of zeros.



The 11lumination pattern would be of limited extent which could be
modeled by mulitiplying the above by a slowly varying weighting functton
defining the fi1eld-of-view, (AR/4)t(x,y), so that the entire
t1lumination pattern is

™ _X anv
w(x,y) = t(x,y) cos <3iﬂg%> cos 'TR2¥>'

where there are a number of cycles of the cosines over the extent of
t(x.y).

What is accomplished by this is a quasi-sampling of the object.
It may be possible to use the closed-form recursive reconstruction
algorithm to reconstruct an object, illuminated by w(x,y) above,
from its autocorrelation, or it may be necessary to make
modifications to reduce the errors due to approximating this pattern
by a true sampling pattern.

Note that by the addition of more plane waves it is possible to
qet sharper local maxima and broader stripes of low intensity, but
at the expense of a more complicated illumination system with
phase-stability problems of its own.

In the real world, the four mutually coherent illumination
sources may have an unknown relative phasing between them. I[f the
constant relative phases of the four sources are 6], 6>, 63 and
64, then the product of cosines like the equation above occurs
only if #) - g5 - ¢3 + ¢4 = 0. This implies a stringent
stability requirement on the illumination system, but it requires
the control of only a single parameter (one piston term) rather than
the control of the phase of an entire large aperture.
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CONSTRAINT I‘NVESTIGATIN
In this section the various forms of constraints that might be useful
for phase retrieval are discussed. Section 4.]1 describes results
obtained with a vartety of support (illumination pattern) constraints.
The vast majority of the effort to date concentrated on developing
1maging concepts based on the support constraint. Section 4.2 describes
other constraints that might also prove useful.

4.1 EFFECT OF ILLUMINATION PATTERN SMAPE

The support, S, of an object 1s defined as the set of points for
which the object is nonzero. For the case of a satellite imaged against
the night sky or a ship imeged on calm water with a SAR, the support of
the object 1s basically the filled-in outline of the object. For an
afirborne or spaceborne Sensor looking downward at a general scene, the
extent of the object 1s basically defined by the field-of-view of the
sensor. This latter case does not represent a useful support
constraint. However, for an imaging systems employing active
11lumination, the transmitted beam (the 11lumination beam) can take on a
known shape at the plane of the target, and 1t can be designed to occupy
an area smaller than the field-of-view of the recefver. Then the
effective support of the object is the support of the 1l1lumination beam
pattern. For the case of a SAR, 1t s assumed that when no phase i
available the pulse ‘epetition frequency fs at least twice that
ordinartly required by lyquist sampling when phase information is
available.

The two most important properties of an 1llumination pattern are
its shape (elliptical, rectangular, polygonal, etc.) and its taper (how
slowly 1t transitions from the bright part of the pattern to where it is
effectively zero). As shown in the proposal [4.1, p. 2-29], phase
retrieval algorithms are much more effective for some shapes (which we
refer to as strong shapes) than for others. Furthermore, phase
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retrieval algorithms are more effective for sharp support constraints,
1.e. when there 1s little or no taper to the 1llumination pattern [4.1,
p. 2-25]. Secttion S5 of this report details the results of our
investigation of the effects of tapered illumination patterns and
algorithm improvements that were made for the case of larger amounts of
taper. In what fmmediately follows we discuss the effects of the shape
of the support.

In early phase retrieval work there was not an awareness that the
support of the odject played an important role in the success of phase
retrieval. Early successful reconstruction results were for space
objects whose supports were naturally non-centrosymmetric [4.2]. Other
groups attempted phase retrieval for unnatural objects -- scenes bounded
by squares -- and were unsuccessful. Fiddy, Brames and Dainty [4.3]
found that the iterative Fourter transform algorithm, although 1t worked
poorly for a rectangular support, worked well for a support consisting
of a rectangle plus an extra point just off one corner of the rectangle.
This latter support has the special property that any sampled function
defined on that support, which 1s nonzero at the extra point and at one
opposite corner, has a Fourier transform that i1s a nonfactorable
polynomial according to Efsenstein's irreducibility theorem. This
implies that the phase retrieval problem in unconditionally unique for
objects of this type. In retrospect, from those results we can make the
crucial connection between three different aspects of the phase
retrieval problem: the support of the object, the uniqueness of phase
retrieval, and the success of the iterative Fourier transform
algorithms.

The trends connecting those three elements, which we have continued
to confirm, are the following. First, the support of the object
determines whether ambiguities are possible. Second, objects for which
uniqueness can be proven are easier to reconstruct by the fterative
Fourter transform algorithm than are other objects. The first trend is
amply demonstrated in Section 3.2 which shows that sampled objects
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having known, convex hulls with no parallel sides are unique. The
second trend 1s shown by the reconstruction results (4.1, pp. 2-24 and
2-28] in which objects having known triangular support (which are unique
-- see Section 3.2) and objects having known supports with separated
parts (which even in one dimension are usually unique -- see examples in
Section 5) are easily reconstructed while objects with other support
constraints, 1ike that of a single ellipse or a single rectangle are
difficult to reconstruct.

The closed-form reconstruction algorithm described in Section 3.2
may not be practical for use on real-world data, since 1t requires the
objects to be modelled discretely (as a grid of delta functions or
sampled points) and 1t is very sensitive to noise, particularly {f the
vertex points are dim (see Section 3.3). Nevertheless, i1t does
constitute a uniqueness proof for the types of objects to which it can
in theory be applied: objects whose support has a convex hull with no
parallel sides. This leads us to consider 11lumination patterns of this
type. Figure 4-1 shows an example of a reconstruction experiment using
an 1llumination-pattern shape suggested by the uniqueness proof. On the
left is the modulus of a complex-valued SEASAT SAR image multiplied by a
binary pattern (representing the i1lumination pattern) in the shape of a
pentagon. In the center is the modulus of its Fourier transform (the
Fourier phase was discarded). The fterative Fourier transform algorithm
was used to reconstruct an image, the modulus of which is shown on the
right, from the Fourier modulus using the known support pattern. The
result shown {s after several hundred 1terations (it had not completely
converged yet), and it strongly resembles the original object, although
not perfectly. Given the difficulty in reconstructing complex-valued
images with contiguous supports (with the exception of triangular
support) [4.1, pp. 2-24 to 2-30], the success of this kind of support
constraint would have been difficult to anticipate were it not for the
uniqueness proof.
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FIGURE 4-1. RECONSTRUCTION EXPERIMENT USING PENTAGON-SHAPED
ILLUMINATION PATTERN. Left to right: modulus of complex-valued
illuminated SEASAT SAR scene; modulus of signal history (Fourier
transform); modulus of image reconstructed from modulus of signal
history and pentagon-shaped support constraint using the iterative
Fourier transform algorithm.
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In susmary, to date the support constraints found to be most useful
for phase retrieval are (a) supports having two or more well-separated
parts and (b) supports having convex hulls with no parallel sides. The
farther the sides are from being parallel, the better.

4.2 OTHER CONSTRAINTS

Any information that 1s in a domain other than the domafin of the
measured data has the potential for being a useful constraint for phase
retrieval. Constraints in the domain of the measured data usually just
limit the available data and tend not to be useful for phase retrieval.
Candidate constraints for the phase retrieval problem are listed In
Table 4.1.

Table 4-1
CANDIDATE CONSTRAINTS

Support (11lumination pattern)
Nonnegativity

Polarization

Transmitted waveform

Point scatterer in scene
Other scene characteristics

Of these, the support constraint received the most attention, and 1t is
discussed in Section 4.1. The other constraints are described in what
follows.

Nonnegativity

The nonnegativity constraint has been very useful in previous phase
retrieval efforts [4.2] and also in other image reconstruction problems,
such as tomographic reconstruction from incomplete projections and
constrained deconvolution. Unlike the support constraint, nonnegativity
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must exist naturally -- we do not know how to impose 1t artificially.
It naturally occurs in most passive, noncoherent imaging scemarios. The
brightness distribution of an incoherently-11luminated reflecting object
or a self-emissive object 1s characterized by a real, nonnegative
function (power or photons per unit area). This can be true for
actively 11luminated objects as well, as long as the 1llumination is
sufficiently incoherent. An exception 1n which this constraint may not
br: valid 1s for passive doppler imaging as encountered in the PACE
program [4.4], for which the aperture function 1s band-pass.
ronnegativity 1s not as useful for dand-pass systems since the impulse
response has very large negative (or cosplex-valued) stidelobes which
convolve the image, destroying 1ts nonnegativity. For the cases in
which nonnegativity naturally does occur, it should be relied on heavily
as 3 phase retrieval constraint.

Polarization

Certain kinds of reflecting objects have distinctly different
reflectivities for the two different receive polarities (1.e. for same
polarity as transmit or for oppostte polarity). As an example, corner
reflectors reflect either very strongly or very weakly depending on the
polarization. Unfortunately, from a single collection it is not
immediataly obvious how to utilize this information. On the other hand,
1f two collections are made simultaneously, one for each polarization,
then there 1s increased possibility of using polarization
advantageously. One such possibility would be to use the difference
between two degraded images (with measured Fourfer phase in the presence
of phase errors) to identify point-l1ike reflectors Then the point-like
reflectors could be used in the prominent-point processing described
below. Other examples of using polarization may be also be possible.
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Transmitted Waveform Type

Early on in the program 1t was thought that perhaps transmitting a
pulse with missing frequency bands might be useful insofar as 1t would
constitute a support-like constraint in the signal history. Upon
further examination, 1t appears that such missing frequencies would
primarily result fn a loss of data rather than constituting a useful
constraint.

A point worth meking relating to transmitted wavefront is that the
use of phase retrieval techniques may facilitate the use of
nonconventional waveforms. As the transmitted waveform departs from the
standard set (e.g. the chirp waveform), the availability of hardware
that can form the desired waveform in a phase-stable manner may be
questionable. By reducing the tolerance on the phase stability of 2
waveform generator it may be possible to achieve waveforms that would
otherwise be very difficult to produce. The reduced tolerance
imaging/phase retrieval techniques may provide the means for reducing
the phase stability of the waveform generator while maintaining the
desired resolution.

Point Scatterers in Scene

Presently, point-1ike scatterers (prominent points) in the target
area are used for correcting small amounts of phase errors in SAR signal
histories [4.5, 4.6]. Prominent point processing can also be of great
utility for the case of severe phase errors or when no phase information
at all 1s measured. One particular scenario for phase correction in the
presence of large one-dimensional phase errors has already been
demonstrated (4.6]. For the case of motion compensation errors in SAR,
one has a one-dimensional (azimuth) phase error. This occurs
particularly for the case of inverse SAR, for example the radar is
ground-based and the (noncooperative) target flies by with a poorly
known flight path and rotation. If there exists a dominant prominent
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point scatterer in a given compressed range cell, then 1t can be used to
calculate the azimuth phase error (taking its phase to be the phase
error). The phase errors 1in all range bins can be corrected by

subtracting that phase.
Other Scene Characteristics

The constraints mentioned above are common to large classes of
imagery. Also, there may often be additional constraints that exist ir

specific instances. For example, {f the scene has been imaged by
another sensor system or by a similar sensor at an earlier time, then
these additional images may contain information that can be counted on
to appear in the present image and therefore can be used as an a priori
constraint. Examples include the known existence of permanent cultural
targets or of no-return areas such as lakes or smooth surfaces.
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5
RECONSTRUCTION OF OBJECTS WITH TAPERED ILLUMINATION

5.1 STATEENT OF PROBLEM

[t 1s well known that knowledge of the support of an object can be
a powerful source of information in image-reconstruction problems. By
support we mean a compact region outside of which the object is known to
be zero, and we denote the set of points that make up the support by the
symbol S. In particular, considerable success has been realized in
reconstructing an object from its Fourier modulus and a known support
(5.1,5.2]. In the reduced-tolerance imaging program an effort is being
made to exploit this ability.

Consider an active sensor system that illuminates a target area so
that the 1llumination is confined to a predetermined region. Let h(x,y)
be the complex reflectivity of the target:

h(x,y) = [h(x,y)]| eonlxsy), (5-1)

Let w(x,y) be the complex illumination function:

wix,y) = [w(x,y)| ew“‘(x'y)- (5-2)

We define the effective object as the product of the complex
reflectivity of the target and the illumination function:

f(x,y) = wix,y) h(x,y)

= [f(x,y)l e!¢(xsy) (5-3)
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The effective object will now have a support corresponding to the known
extent of w(x,y). The intensity pattern of the field emanatiig from the
11luminated target 1s measured in the far field which may be interpreted
as the squared modulus of the Fourier transform of the effective object.
Known phase-retrieval algorithms may then be employed to reconstruct the
effective object from the support constraint and the measured Fourier
modulus.

Notice that there is some freedom in the choice of the form of the
11lumination pattern. For example, the shape of the outline of the
pattern could be specifically selected to enhance the usefulness of the
support constraint. It 1s known that certain symmetries in object
support can create stagnation problems in phase-retrieval algorithms.
Consequently the outline of the illumination pattern should have an
asymmetric shape. Furthermore, there is some evidence that a support
consisting of disjoint regions can be an advantage 1n phase retrieval.
Finally, 1t {is useful to choose an illumination functtion with a constant
modulus over most of the region of illumination thus facilitating the
inversion of Eq. (5-3):

=fx,
w(x,y

. Fx ei(¢(xsy)'¢w(xay))
kuéx.y“

when one desires the complex reflectivity of the target without the
influence of the illumination pattern.

h(x,y)

(x,y)eS

Unfortunately, the modulus of the 1llumination pattern will not be
binary in practice, but will have some taper assocliated wit * at the
edges, due to the effects of diffraction by the apertur:c of the
11luminator. The contrast between an i1deal untapered illumination
pattern and a more realistic 1{llumination function 1s fllustrated in
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Figure 5-1. Intuitively one might expect, and experimentally 1t has
been shown [5.1,5.2], that the reconstruction of an object from its
Fourier modulus and support would be more challenging for an object with
a tapered profile than for one with a sharp profile. It was the purpose
of this inquiry to explore this 1ssue via computer simulation and to
look for algorithmic modifications that would enhance restoration for
this case. For example, it was hoped at the outset that any
difficulties incurred by tapered 1llumination might be offset by the
support being disjoint.

5.2 PRELIMINARY SIMULATIONS

We began by exploring the effect of tapered 1llumination on phase
retrieval by means of computer simulation. A pafr of disjoint ellipses
was used as the basic shape for the illumination pattern. The untapered
11lumination pattern was assigned a value of unity within the ellipses
and zero outside. Taper was introduced by convolving the binary
ellipses with a convolution kernel. The normalized kernels used in
these preliminary simulations are shown tn Figure 5-2. Cross sections
of the edge of the resulting illumination patterns are given in Figure
5-3.

As mentioned earlier, it was speculated that dfsconnected support
might help to overcome any problems associated with tapered
illumination. For this reason the total illumination pattern was chosen
to be two disjoint ellipses. Simulatfons were performed for objects
with differing amounts of i{llumination taper and differing amounts of
separation between ellipses in the 1l1lumination pattern. A given
simulation was performed by first multiplying cuoaplex SEASAT SAR imagery
by the given illumination pattern to create an effective object.
Because it 1s the effective object that we try to recover through
phase-retrieval techniques, we will henceforth refer to this as the true
object. This object was Fourier transformed with an FFT and the Fourier
magnitude was retained. The known region of support in the object

62



FIGURE 5-1. CROSS SECTIONS OF EDGES OF ILLUMINATION PATTERNS.
A. Ideal binary illumination. B. Tapered illumination.
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FIGURE 5-2. DISCRETE CONVOLUTION KERNELS USED TO ADD TAPER

TO BINARY ILLUMINATION PATTERN. A. Center-weighted kernel

ylelds taper #1. B. Evenly-weighted kernel yields taper #2.
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FIGURE 5-3. CROSS SECTIONS OF ILLUMINATION OF TAPER USED IN
PRELIMINARY SIMULATIONS
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domain was supplied by hard limiting (thresholding) the 1llumination
pattern with a very small threshold value. A standardized sequence of
error-reduction and hybrid input-output iterations [5.3] were then
performed to reconstruct the object from its Fourier modulus and
support. Convergence for all simulations was monitored by calculating a
Fourier domain normalized error metric,

Y 6 - Pl
el - (5-5)

Y F(u,v) |2

u,v

where F(u,v) is the discrete Fourtier transform of the true object f(x,y)
and G(u,v) 1s the Fourfer transform of the image estimate. The
convergence 1s portrayed in Figure 5-4 for six kinds of {l1lumination--
three amounts of taper, each with two amounts of separation between
ellipses. It is important to note that Figure 5-4 {s a log-log plot and
therefore the behavior of the algorithm becomes horizontally compressed
with increasing number of iterations. Figures 5-5, 5-6, and 5-7 give
the final reconstructions for each of the cases tested. These results
confirm our expectation that increased amounts of tllumtination taper
make the reconstruction process more difficult. [n fact, for the case
with the largest amount of taper the algorithm convergence appears to
have stagnated. This 1s in spite of the fact that the amount of taper
i1s extremely mild. There are 51 pixels along the major axis of the
large ellipse and only two pixels of taper at the edge. Thus
convergence appears to be relatively sensitive to 1llumination taper.
It 1s important to realize that the convergence curves shown in Figure
5-4 correspond to a specific initial estimate and that the convergence
behavior could vary when alternative initial estimates are used.

5.3 THE SHRUNKEN-MASK ALGORITHM

In order to explore the reasons for stagnation we created a
difference image between the modulus of the true object and that of the
restored object for the case of intermediate taper (taper #1). This
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FIGURE 5-5. RECONSTRUCTIONS OF OBJECTS WITH UNTAPERED ILLUMINATION
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FIGURE 5-6. RECONSTRUCTIONS OF OBJECTS WITH MILDLY TAPERED
ILLUMINATION. (Taper #1 in Figure 5-3)
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(Taper #2 in Figure 5-3)
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difference image is bipolar and a bias was added for display in Figure
5-8. Notice that the difference image indicates that the reconstruction
1s shifted in the horizontal direction relative to the true object.
This suggests that the algorithm may be stagnating because of its
inability to properly register the reconstruction relative to the
support constraint when tapered illuminatfon is used.

To better understand this conjectured mode of stagnation consider
an object with tapered illumination f(x,y). We define a binary mask
m(x,y) that is the characteristic function of the known support:

1, (x.,¥)eS
m(x,y) = (5-6)
0, (x,y)eS'

where S' stands for the complement of S. An image ¢'(x,y) outputted
by the iterative Fourier transform algorithm fs the inverse Fourier
transform of a Fourier-domain estimate having modulus equal to the given
Fourier modulus data coupled with the current estimate of the Fourier
phase. Suppose the output image is just a shifted verstion of the
object:

g'(x,y) = f(x - Xgr ¥ = ¥,) (5-7)

A shift in the object domain introduces a linear phase factor in the
Fourter domain and has no effect on the Fourier modulus. This output
image will clearly satisfy the Fourier modulus constraint. The output
image has, however, been shifted relative to the mask so that the object

1ain support constraint has been violated. In other words,
~1tiplying by the mask function will crop an edge of the output image.
We use a normalized error metric to indicate the degree of inconsistency
between an estimate and the object support constraint:
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FIGURE 5-8. MODULUS DIFFERENCE BETWEEN OBJECT AND RECONSTRUCTION.

(I1Tumination due to Taper #2 in Figure 5-3)
image has been biased up for display.
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[g' (x,y)m'(x,y) -

° Z lg‘(x.y)l2

X.y

Ang!

(5-8)

where m'(x,y) 1s the characteristic function of S'. !f the shift vector
(xo.yo) is small with respect to the illumination taper the object
domain error metric will also be relatively small. This is because only
the tapered edges, where there is little energy, will be cropped and
this contributes to only a small portion of the total object energy.

Though the cropped output image now satisfies the support
constratint, its Fourier-transform modulus no longer exactly equals
| F(u,v)| . It can easily be shown that the Fourier-domain error metric
is also small. Thus the error metric penalty is small in either domain
when shifting a tapered object by a small amount. An algorithm that
chooses successive estimates based upon these error metric objective
functions will be insensitive to small shifts and would easily stagnate
due to extremely small slopes in the objective function. Such an
algortithm would be ineffective at finding the proper object
registration. Furthermore, one can imagine that with the right
redistribution of the cropped object enerqgy an object estimate could
correspond to a local minimum in the objective function.

Although the mode of stagnation just presented is conjecture, 1t
provides the motivation for the "shrunken-mask® algorithm. The
shrunken-mask algorithm is designed to find the proper registration
early on in the iterative reconstruction thus circumventing
shift-related stagnation that might otherwise appear.

Consider a new binary mask mt(x.y) created by hardlimiting the
tapered 1llumination function with some intermediate threshold value:
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1, (x,¥) such that wix,y) > t
m (x,y) =

t 0, (x,y) such that 'wix,y) < t

(5-9)

where t ts the threshold value, 0 < t < 1. Notice that m (x,y) will be
a "shrunken" version of the full mask m(x,y) defined for t = 0. Suppose
that we employ the shrunken mask as the support constraint. [f we crop
the true object with the shrunken mask this will yield an estimate with
a modest penalty in both the object and Fou=ier domains, so long as the
threshold value 1s not too large. Notice, however, that a shift in this
cropped estimate will yield an object-domain penalty, due to the
shrunken mask and the artifically created dfscontinuous object ec¢es,
that 1s much greater than the penalty that would be due to the normal
support constraint. T.us one would expect the output 1mage to be
centered better with the shrunken mask.

While the Fou ter modulus and the shrunken-mask support construints
are inconsistent, they may still be jointly enforced in an iterative
reconstruction algorithm to get an intermediate reconstruction. We
might expect this intermediate result to display gross features of the
true object in proper registration. Enlarging the mask to 1ts full size
(setting t = 0) removes the constraint inconsistency and allows for a
complete reconstruction that hopefully avoids shift-related local
minima. The shrunken-mask algorithm is shown schematically 1n Figure
5-9.

The snrunken-mask algorithm was first tested on the elliptical
object where the taper (taper #2 in Figure 5-3) 1nduced stagnation 1n
previous trials. The convergence characteristics are displayed in
Figure 5-10. It is clear that the conventional algoritnm performed
better early on in the iterative sequence. This {s reasonable since the
support constraint is initially looser and easier to satisfy. By
contrast, the shrunken-mask algorithm error metric quickly levels off
while an intermediate reconstruction 1s being produced but drops

dramatically when the full-size mask is introduced.
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FIGURE 5-9. THE SHRUNKEN-MASK ALGORITHM
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FIGURE 5-10. CONVERGENCE FOR SHRUNKEN-MASK ALGORITHM. Taper 1s Taper
#2 in Figure 5-3. The shrunken mask had a threshold value t = .9.
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5.4 THE ENLARGING MASK ALGORITHM

While the success in the shrunken-mask algorithm is encouraging the
amount of illumination taper for which it worked remains extremely
small. A much more substantial taper was introduced by using a circular
convolution kernel with a radius of 4 pixels. The resultant
illumination pattern is shown in Figure 5-11. When the shrunken-mask
algorithm was applied to an object with this i1llumination the
convergence was not much better than the conventional algorithm. This
was true for a variety of threshold values that were tested. Apparently
the increased taper 1s a significant obstacle for the shrunken-mask
algorithm.

Recall that the shrunken-mask algorithm jumps from a small mask to
the full mask in a single step. A logical generalization of the
shrunken-mask algorithm uses several intermediate-size masks in order to
make a more gradual transition to the full size mask. We call this the
"enlarging-mask” algorithm. The collection of masks used 1n a given
application is characterized by a sequence of threshold val.ci. Tne
convergence curve for the enlarging-mask algorithm when applied to an
object with this increased taper is shown in Figure 5-12. The scallop
effect exhibited by the convergence curve 1S due to the suc:-essive
application of 1ncreasingly enlarged masks. The enlarging-mask
algorithm clearly out-performs the shrunken-mask algorithm and the final
reconstruction exhibits very goos agreement with the data and support
constraint.

A final trial was performea with an even more realistic
illuminattion taper created with a Gaussian-11ke convolution kernel with
a maximum radius of 6 pixels. This kernel, K(r), vas formed by
correlating a circle function with a radius of 2 pixels with its own
autocorrelation:
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FIGURE 5-11. [LLUMINATION PATTERNS
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K(r) = CIRC (r/2) ** CIRC (r/2) ** CIRC (r/2), (5-10)

where the double star indicates two-dimensional crosscorrelation. Thi,
kernel is a close approximation to a two-dimensional Gaussian functtion.
The resultant 11lumination pattern 1s shown in Figure 5-11. Note that
this 11lumtnation has a smoother taper and that the tatls extend out
further at very low levels. The convergence curves for this cace are
shown in Figure 5-13. Again the enlarging-mask algorithm succeeds at
finding a reconstruction that is in excellent agreement with the data
and support constraint whereas the conventional algorithm did not. This
reconstruction 1s visidbly indistinguishadle from the true object. The
results of reconstructions performed with and without the enlarging-mask
algorithe are given in Figure 5-14 for 1llumination patterns due to the
ctrcular and Gaussian convolution kermels.

While tapered i1lumination presents signtficant stagnation prodblems
for conventional phase-retrieval algorithes, these examples demonstrate
that the enlarging-sask algorithe successfully circumvents these
difficulties, even in the presence of large amounts of taper.
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FRECOMS TR T

FIGURE 5-14. RECONSTRUCTIONS W:Th AND WITHOUT THE ENLARGING-MASK
ALGORITHM (EMA). The 1llumination pattern in A-C is shown in Figure
5-118. The illumination pattern in D-F is shown in Figure 5-11C.
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6
GRADIENT-SEARCH METHODS IN PHASE RETRIEVAL

6.1 INTRODUCTION

Researchers have explored many approaches to solving the phase
retrieval problem. These include direct methods using complex zeros in
the analytically extended Fourier modulus [6.1], the error-reduction
algorithm [6.2, 6.3), input-output algorithms [6.3], recursive
algorithms (6.4, 6.5], ana gradient-search algorithms [6.3, 6.6, 6.7,
6.8]. Of these approaches the input-output algorithms or more
specifically the hybrid tnput-output (HI0) algorithm appears to be the
current algorithm of choice when operating on 2-dimensional data. The
HIO algorithm has consistently outperformed competing algorithms with
respect to computational durden and rodbustness to noise. In spite of
the relative success of the input-output algorithms there are documented
itnstances in which such an algortithm converges extremely slowly or even
stagnates in 1ts convergence [6.9].

In this report we are interested in the specific phase-retrieval
problem for which the Fourier modulus and an object support constraint
are known. MWe resurrect the fdea of employing a gradient-search method
in the hopes of developing an algorithm that will compete wel! with or
complement the fnput-output approach. Graaient-search approaches
require the determination of an objective function that indicates tne
degree of consistency with the data and the constraints. This choilce 15
ptvotal in designing a specific gradient-search algorithm. We propose
here three distinct objective functions and explore the performance of
each when used in conjunction with standard gradient-search techniques.
[n the next section we discuss the error-reduction algorithm, the parent
of the input-output algorithms and indicate how it can be interpreted as
a gradient-search algorithm. We i1ntroduce the first new objective
function, called the summed objective functfon, in Sectfon 6.3. T.e
second and third objective functions are introduced in Sections 6.4 and
6.5. These objective functions utilize the same object-support error
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metric but differ in their underlying parameters. We conclude in
Section 6.6 with projections of future work.

6.2 THE ERROR-REDUCTION ALGORITHM

An iterative algorithm that has enjoyed much success in phase
retrieval 1s known as the error-reduction (ER) algorithm, which may be
easily understood by referring to Figure 6-1. This algorithm consists
of transforming between object and Fourier domains and applying
appropriate constraints in the respective domains. We use the symbol
9k(") to represent the estimate of a object given by the kth iteration
of the ER algoritm. The prime notation in qk'(x) indfcates a version
of the kth estimate for which the Fourter-domain constraints have been
enforced. We use uppercase symbols to denote a Fourier-domain
representation of a function. In practice the data are always sampled
and therefore we use the discrete Fourier transform (DFT)

G(u) s Z q(x).-12"’0'l/n 6-]\
X
and its 1nverse
9(x) = ~‘2£ Glu)e'dTur /N 6-<
J

'n the algorithm. Of course the OFT 1s most effictently computed with 3
fast Fourter transform (FFT). In Eqs. (6-1) and (6-2) x and u are
two-dimensional vectors in the object and Fourier domains, respectively,
anag the summation notation 1s understood to represent a separate
summation for each component of the vector running from O to N-1.

In order to 2nforce a given constraint we define a least-squares
constraint operator. The function of the operater i1s to produce an
output that conforms to the constraint but differs from the input as
Tittle as possible in a least-squares sense. [t can be shown that when
the constraint operators have this property the mean squared error
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FIGURE 6-1. ERROR REDUCTION ALGORITHM
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between the latest estimate and the data or known information will
decrease (or stay the same) at each iteration [6.3]. Thus as the
algorithm proceeds, the reconstruction estimate conforms more and more
closely to the given constraints. This is the motivation for the title
“error reduction.”

Although many types of constraints have been used with the ER
algorithm, our problem affords a modulus constraint in the Fourter
domain in conjunction with a support constraint in the object domain.
This specific realization of the ER algorithm is {llustrated in Figure
6-2. The modulus constraint ts performed by substituting the modulus of
the latest estimate with the known modulus while leaving the Fourier
phase untouched:

G'(u) IMI‘ (6‘3)

G(u)|

where F(u) 1s the known Fourier modulus. The object domain constraint
's equally straightforward and is enforced by setting the values of all
pixels that fall outside of the support equal to zero:

Qk'(x) X £ S

9k¢l(x) -

where S stands for the set of pixels within the known support and S' 1
the complement of S.

In order to monitor the progress of the ER algorithm 1t 1s useful
to define an error metric for each of the constraints. The error metric
is essentially a mean squared error between estimates before and after a
constraint has been applied and indicates the degree of agreement
between the latest estimate and the known constraint. The error metric
for the Fourtier modulus constraint is defined as follows:
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erl « N2 30 (16w - [F(w P (6-5)
u

The error metric for the object-support constraint is given by

e, = 2

2 | 9'(x)|2 . (6-6)
Xe

As the algorithm proceeds both of these error metrics will decrease. If
they simultaneously achieve values close to or equal to zero then the
algorithm has achieved a restoration that has good agreement with both
constraints.

Suppose that we treat the error metric eFZ as an objective function

to be used in a gradient-search algorithm. OQur desire is to minimize
the objective function by varying a set of parameters in the estimate.
The parameters we employ are the individual pixel values of the
estimate. For the present we treat only real-valued objects which
require Nz independent parameters for an NxN image (complex objects
require 2N2 parameters). The Jth pixel in the object domain is located
by a vector xJ where the subscript j represents any convenient ordering
of the N2 pixels. We construct an Nz-d1mensiona1 Euclidian vector
space for which each coordinate axis corresponds to an individual
parameter. Each point in this parameter space therefore corresponds to
an object estimate and may be represented by the parameter vector g(x).
We represent the Jth parameter and its associated parameter space unit
vector by g(xJ) and vJ. respectively. The unit vector vj may be
interpreted as an estimate for which all pixels are zero except for the
jth pixel which has unit strength., This vector may also be represented
by the Kronecker delta 6x.x . The objective function, er(g(x)). is a
function of the N2 parametJrs, and may be visualizeu as a surface in an
N2+1 -gimensional space. If we were able to calculate the gradient of
this surface at given estimate Tocations then wall-known gradient-search
methods could be employed. The gradient is formally expressed
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N2 2

7ellg(x)) = JZ] ST Yy (6-7)

One method of computing the gradient is to proceed numerically using a
finite differences approximation to the partial derivative:

der’ e llglx) +av,) - e ¥(g(x))

ag(xj) . a

(6-8)

where o 1s small compared with significant feature sizes in the
objective surface. This brute-force approach is computationally
prohibitive since each evaluation of eFZ involves an NxN FFT and this
must be accomplished for each of the N2 parameters. Fortunately Fienup
[6.3] showed that the exact partial derivative may be calculated
analytically as follows:

2
aeF =z - ' (6'9)
o Z[g(xj> 9 (xj)] :

We reemphasize that the prime indicates that the Fourier magnitude
constraint has been applied to the estimate. If Eq. (6-9) is
substituted into Eq. (6-7) the result implies that the entire gradient
may be evaluated with a forward and an inverse FFT:

VEE(Q(X)) = ; Z[g(xj) - g‘(xj)]v‘j
(6-10)
= 2 [a(x) - g'(x)]

This desirable result means that a gradient search method could
realistically be employed for the eFZ(g(x)) objective function.
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Perhaps the simplest gradient-search algorithm 1s the method of
steepest descent [6.10]. According to this approach the latest estimate
may be imprcved upon by moving in parameter space in a direction
opposite that of the gradient. The location of the minimum of the

objective function along the resulting one-dimensional cut is then
determined giving an improved estimate. This procedure 1s repeated

iteratively until a local minimum 1n the objective function is achieved.

Some optimization problems afford additional a priori information
about disallowed regions in parameter space. There are many ways of
constraining the final solution to the allowed region of parameter
space. One obvious way of incorporating this information is to proceed
as usual with the steepest-descent algorithm until an estimate is
produced that violates the a priori knowledge. A constraint operator is
then employed to find the closest allowed estimate. The
steepest-descent algorithm is then applied to the latest allowed
estimate. Unfortunately this constrafned steepest-descent algorithm can
be very slow since the direction of steepest descent is often in
competition with the direction enforced by the constraint operator.

A careful analysis of the ER algorithm reveals that it 1s, in fact,
a constrained steepest-descent algorithm for which the objective
function is eFZ(g(x)) and the knowledge of object support defines a
disallowed region in parameter space. The kth i{teration of the ER
algorithm begins with an estimate, gk(x). and replaces its Fourier
modulus with the known Fourier modulus to get gk'(x). Notice that this
fntermedfate result is equivalent to moving from gk(x) in parameter
space 1n a gk‘(x) - gk(x) direction; that 1s, ir a direction opposite
to that of the gradient. In fact it can be shown that the objective
function 1s a minimum (zero) at gk'(x). Typically gk'(x) will violate
the known support and therefore exists in a disallowed regfon in
parameter space. Applying the support constraint to gk'(x) produces a
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new estimate, Ipe1? that now resides in the allowed region, thus
completing one iteration of the constrained steepest-descent algorithm.

While we have thus far treated the Fourier-domain error metric as
an objective function we could just as easily have selected the object-
domain error metric, eoz(g'(x)). for that role. The gradient for this
objective function is easily obtained because the calculation of the
partial derivative with respect to a pixel value is more direct:

2

o .2 2 [9’(x)]2

ag’(xj) 3g’(xj) xes'

oe

(6-11)

0 €S

X3
Zg'(xj) X5 € S

Recall that the support constraint operator sets to zero all pixels in
S' and leaves those in S untouched. Clearly, this operation moves the
latest estimate gk'(x) in a direction opposite that of Veoz(g'(x)). In
addition this objective function is quadratic along this one-dimensional
cut with a minimum value (zero) at gkﬂ(x). The Fourier modulus
constraint may now be interpreted as the operator that takes gk”(x)
out of a new disallowed region in parameter space. Thus the ER
algorithm qualifies as a constrained steepest-descent algorithm from
this new perspective as well.

6.3 THE SUMMED OBJECTIVE FUNCTiON

Historically the error metric e°2 has been used to evaluate an
estimate for which the Fourier constraints have been satisfied.
Consequently, this error metric 1s a function of the pixel values in a
primed estimate, as defined in Eq. (6-6). A simple generalization of
this definition yields a new error metric that can be applied to any
estimate g(x):
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2gx) e 2 [9(x)12 (6-12)
° xeS'

It is easy to show that the partial derivative of 502 with respect to
pixel values in the estimate has the same form as given in Eq. (6-11).
Clearly this generalized objective function and its gradient still
pertain to functions for which the Fourier constraints have been
satisfied. Notice, however, that eoz(g(x)) now has the same underlying
parameters as eFZ(g(x)). This observation affords still a third
interpretation of the ER algorithm that yields new insight. The ER
algorithm may be viewed as alternately performing steepest-descent
operations on two objective functions, eFZ(g(x)) and eo?‘(g(x)), that
coexist in the same parameter space. In practice it is often observed
that the ER algorithm converges rapidly for iterations early in the
sequence but that convergence becomes painfully slow as the iteration
number increases. This is because the work performed in minimizing the
ezpl,g(x)) objective function is largely nullified when minimizing the

ezo(g(x)) objective function, and vice versa. Figure 6-3a illustrates
this point pictorially. This viewpoint suggests the definition of a new
objective function that is the sum of the opposing objective functions:

e 2g(x)) = eZ(a(x)) + 5 %(g(x) . (6-13)

The gradient of this new objective function is simply the sum of the
gradients already derived:

v 2g(x) = v 2(g(x)) + ve,2(a(x)) . (6-14)
The calculation of this new gradient involves a forward and inverse FFT

and a small amount of computational overhead. Figure 6-3b suggests how
moving in a direction opposite that of the gradient of the summed
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FIGURE 6-3. OBJECTIVE FUNCTION SURFACES FOR TWO PARAMETER OBJECTS

a. Surfaces used in error reduction. b. Summed objective function
surface.
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objective function may circumvent stagnation due to opposing
constraints. Notice that 1f we choose to remain with steepest descent
using esz. the stepsize still has to be determined. This can be
accomplished by one of a variety of line search methods that utilize
additional samples of the objective function. Each additional
objective-function evaluation requires a single forward FFT.
Furthermore, because the gradient of the summed objective function is so
easily computed more sophisticated gradient-search methods such as the
method of conjugate gradients or a memoryless quasi-Newton method [6.10]
may profitably be employed. Finally, a simple generalization of these

ideas to include complex objects is found in Appendix E.
6.4 THE e 2(g(x)) OBJECTIVE FUNCTION

We now briefly review the basic characteristics of the so-called
input-output phase-retrieval algorithms. These observations will
suggest the defining of a new objective function that will serve as an
alternative to the summed objective function.

[t 1s convenient to partition an iteration of the ER algorithm into
two steps. The first step enforces the Fourier-domain constraints while
the second step enforces the object-domafn constraints. For the moment
we focus on the first step. This step involves a Fourier transformation
of the latest estimate, a substitution of the Fourier moduius by the
known values, and an inverse Fourier transformation. Together, these
operations constitute the enforcemnt of Fourier knowledge and may be
viewed as a single nonlinear operation. This is depicted schematically
in Figure 6-4. [t ‘s important to recognize that any output of this
operation will satisfy the Fourter-domain constraints and consequently
e,,.2 will be zero. Should the output also satisfy the object-domain
constraints then a solution has been found. This suggests that clever
adjustments to the input function might produce an output that more
closely satisfies the object-domain constraints. The degree of
consistency with the support constraint can be monitored by the eoz
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error metric defined in Eq. (6-6). A variety of feedback strategies
borrowed from nonlinear-systems control theory can be employed to modify
the latest input in order to drive the eoz error metric toward zero.
The use of each feedback rule defines an individual algorithm and the
collection of feedback rules defines the class of input-output
phase-retrieval algorithms. All feedback rules that have been employed
to date are point operations meaning that an input pixel-value
adjustment is based solely upon the desired change in the corresponding
output pixel value.

We recognize immediately that if a solution were to serve as an
input function then it will pass through the nonlinear modulus operator
unchanged. Notice however that other fnputs can also output a solution.
In fact any input function with the proper Fourier phase will produce a
solution. Thus a solution will result from any of an uncountable
infinity of input functions, many of which differ dramatically from the
solution. The ER algorithm may be viewed as a particular input-output
algorithm for which the feedback rule drives the input (as well as the
output) toward a solution. By contrast most input-output algorithms
have a more flexible feedback rule since they may converge upon any of
the many fnput functfons that yield a true solution upon output.

We refterate that any output for which eoz is zero will be a
solution. Therefore, the task of simultaneously minimizing the Fourier
and object-domain error metrics has been converted into minfmizing a
single error metric. Unlike the summed objective function, however,
this blending of the two error metrics into one is accomplished without

resorting to ad-hoc methods such as summing.

We use the term objective function to refer to an error metric in
conjunction with a set of underlying parameters. A logical candidate
for an alternative objective function suggested by {input-output
algorithms {s the e 2 error metric as a function of input pixel values.

0
This new objective function should not be confused with the eoz(g'(x))
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objective function used in the ER algorithm which treatsthe N2

object-estimate (output) pixel values as parameters. By contrast the
new objective function, eoz(g(x)). utilizes the 1input-function pixel
values as parameters associated with the object estimate given upon
output. Having made this subtle but critical distinction we may now
write an expression for the gradient of the eoz(g(x)) objective

function:
2

) N an
t o -
Veo(g(x)) < a—g-(;;)-vj . (6-15)

As before a numcrical computation of the gradient {s overwhelming. It
is natural to ask if an analytic expression for the gradient can be
derived. While the details of this calculation are outlined in Appendix
F, we give the suprisingly simple result here:

2 T
deg 5 [IF(u)IGe(u) |6 (u)eg ‘"’],iZnu-xJ/N (6=16)

ag(xj) v [G(u)| 6*(u)

where * denotes complex conjugate and Ge(u) {s the Fourier transform of
an error image ge(x). where

go(x) = §'(x)g'(x) (6-17)
and
I, % s
$'(x) = (6-18)
0, xe S
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Three FFT operations are required to compute Ge from g. A very
important feature of the analytic partial derivative quoted in Eq.
(6-16) is that it has the form of a DFT. The implication is that given
the expression within the brackets all partial derivatives needed to
compute the gradient are provided by a single DFT. Thus the total
computational cost of finding woz(g(x)) for a given tnput function is
four FFTs plus minor overhead. With these manageable computational
requirements the eoz(g(x)) objective function may be minimized via
various gradient-search algorithms. Some care must be taken in the
evaluation of Eq. (6-16) to avoid division by zero. This problem can be
circumvented by adding a small constant to the Fourier magnitude of the
fnput function at those spatial frequencies for which |G(u)| fs
identically zero.

Notice that, 1ike ifnput-output algorithms, there are many input
functions to which a gradient-search algorithm can converge for this
objective function. This means that the vbjective function contains
many global minima, each equally acceptable for producing a solution as
an output. It is conceivable that this multiplicity of input solutions
could yield faster convergence rates than an objective function having
only a single global minimum (e.g. the summed objective function).

It {s useful to recognize that any gradient-search algorithm used
in conjunction with the eoz(g(x)) objective function may also be
interpreted as a particular feedback rule in an input-output algorithm,
Unlike other feedback rules, however, this rule is not a point
operation. In other words, the gradient-search feedvack rule is more
flexible than other existing rules since many inputi pixels may be
adjusted in order to effect a desired change in a single output pixel.

Unfortunately, there is no guarantee a priori that the eoz(g(x))
objective function has a surface contour that lends itself to
minimization via gradient search. For example the eoz(g(x)) surface
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may contain many local minima 1n which gradient-search algorithms could
become entrapped. Answers to such questions are often the byproduct of
extensive experimentation.

Some preliminary experiments were performed in which the coz(g(x))
objective function was used 1n conjunction with the method of steepest
descent. A number of observations can be made about the results
displayed in Figure 6-5. Notice the dominant stripes in the gradient
image for the first iteration. By gradient image we mean the image for
which each pixel value 1s assigned the value of the assoctated component
of the gradient. This 1s the 1mage that is scaled and added to the
latest tnput image to acquire the succeeding input image in a
steepest-descent scheme. These stripes are intriguing; but their origin
ts unknown at present. The magnitude of the gradient was observed to
decrease with iteration number. As a result, the stripes from the first
gradient image still persist in the 100th input image. Notice, however,
that the stripes do not appear in an output image, which 1s consistent
with the notiun that the input image need not resemble the output image.
It 1s encouraging that after 100 iterations the output image bears a
rough resemblance to the true object. More experimentation with this
objective function is needed before a judgement can be made about its
usefulness. For example, more sophisticated gradient-search methods
would have a better chance of converging to a solution. Should the
eoz(g(x)) objective function in conjunction with the best
gradient-search methods prove not to be competitive with current
input-output algorithms, it may yet be useful for breaking out of
stzgnation episodes.

We conclude this section by noting that while we have restricted
objects to be real-valued for simplicity, the case admitting complex
object: 1s of great interest when objects are illuminated coherently.
The definition and derivation of the gradient of the eoz(g(x)) objective
function for complex objects is presented in Appendix G.
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6.5 FOURIER PHASE PARAMETERS

The choice of underlying parameters for an objective function can
have a tremendous impact upon the behavior of gradient-search
algorithms. To this point we have selected the input pixel values (or
real and imaginary parts of the input pixels) as our N (or 2N2)
parameters underlying the eoz(g(x)) objective function. This choice has
merit since it affords an analytic expression for the gradient requiring
only four FFTs. An alternative and very different set of parameters
worth consideration is the set of Fourier phase values in a Fourier
estimate of a solution. Because the Fourier modulus is known, a Fourier
estimate is determined by an estimate of the Fourier phase, ¢(u):

6'(u) = [F(u)le'®(¥), (6-19)

An inverse FFT gives the corresponding object-domain estimate,
g'(x) a N-?. ElF(u)le"(b(U‘e'lZTTU'X/N . (6-20)
u

This estimate may also be interpreted as the output from an input-output
algorithm since it has the proper Fourier modulus. Consequently, the
object-domain error metric can be computed:

=y lemlf ' (6-21)
xe$'
The eo2 error metric is therefore implicitly a function of the Fourier
phase values and e°2(¢(u)) serves as the third new objective function
introduced in this chapter. We mention parenthetically that throughout
this section we allow for complex-valued objects since there is no
simplification of derivations by resorting to real-valued objects.
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